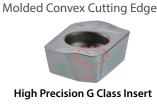
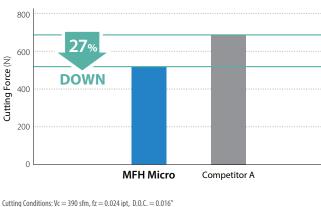


Low Cutting Resistance with a Durable Design Aids in Highly Efficient Machining

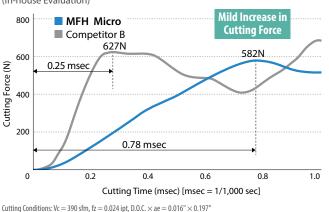
Shortens Rough Machining Cycle Times Replaces Solid End Mills to Reduce Machining Costs Supports Small Machining Centers


MFH Micro

Durable Design Aids in Chatter Resistance Maximum D.O.C. 0.020". Stable High Feed Machining on a Wide Range of Applications

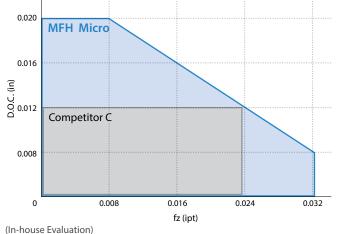


Stable Machining with Chattering Resistance


Molded Convex Cutting Edge Controls Initial Impact when Entering the Workpiece

Cutting Force Comparison (In-house Evaluation)

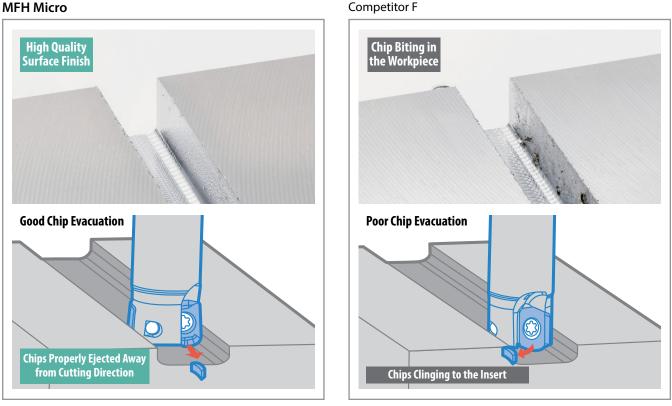
Increase in Cutting Force when Entering Work Piece (In-house Evaluation)


Cutting Conditions: Vc = 390 sfm, fz = 0.024 ipt, D.O.C. > Cutter Dia. $\emptyset 0.375$ ", Dry Workpiece: 1049

2 Wide Range of Machining Applications

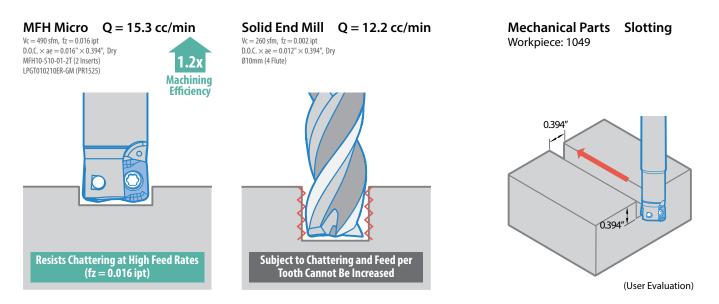
Cutter Dia. Ø0.375", Slotting, Dry Workpiece: 1049

Wide Range of Machining Applications at a Maximum Depth of Cut of 0.020" Stable Machining Even with Small Machining Centers


Cutting Performance Map (Cutter Dia. Ø0.375")

Good Chip Evacuation

Controls Chip Biting with Convex Cutting Edge


Cutting Conditions: Cutter Dia. Dc = 00.375", Vc = 390 sfm, fz = 0.024 ipt, D.0.C. = 0.016" (25 Passes) Total 0.394", Dry Workpiece: Structural Steel

(In-house Evaluation)

4 Replaces Solid End Mills to Reduce Machining Costs

Suppresses Chattering and Increases Milling Efficiency

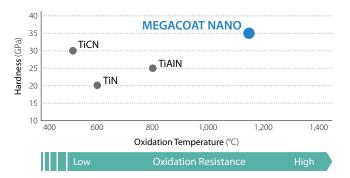
MFH Micro Compared to Solid End Mills

PR1535 MEGACOAT NANO

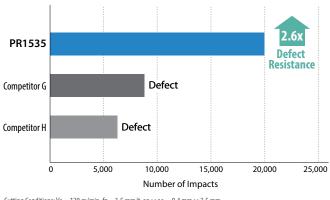
MEGACOAT NANO Grade PR1535 for stable machining of difficult-to-cut materials such as heat-resistant alloy, titanium alloy and precipitation hardened stainless steel

1

23% Improved Fracture Toughness


An increase in cobalt content yields a substrate with greater toughness. Fracture toughness values are improved by 23% over previous grades.

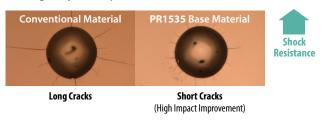
High Toughness Carbide Base Material


23% Fracture Toughness

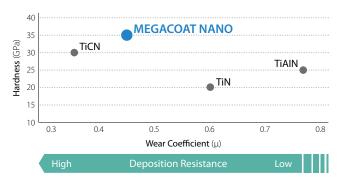
Coating Properties (Abrasion Resistance)

Achieve long tool life with the combination of a tough substrate and a special Nano coating layer

Defect Resistance Comparison (In-house Evaluation)

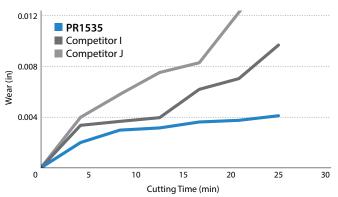


 $[\]begin{array}{l} \mbox{Cutting Conditions: Vc} = 120 \mbox{ m/min, } fz = 1.5 \mbox{ mm/t, } ap \times ae = 0.4 \mbox{ mm} \times 2.5 \mbox{ mm} \\ \mbox{Cutting Dia. } \emptyset 10, \mbox{ Dry} \qquad \mbox{Workpiece: SKD61 (40 to 45 \mbox{ HRC})} \end{array}$

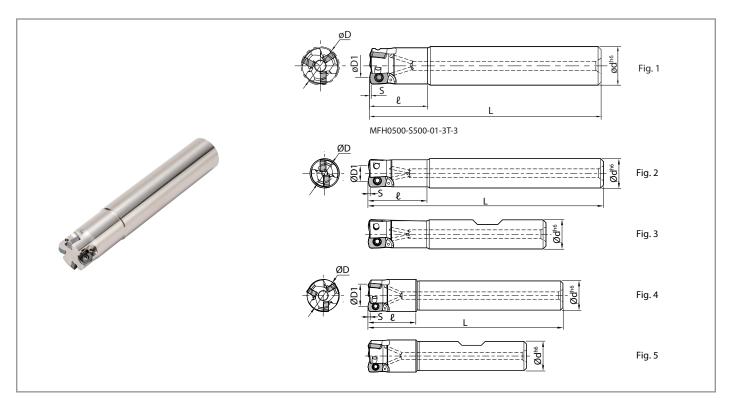


The coarse grain structure and uniform particle size correspond to improved heat resistance, with conductivity values decreased by 11%. The uniform structure also reduces crack propagation.

Cracking Comparison by Diamond Indentor (In-house Evaluation)



Coating Properties (Deposition Resistance)



Stable Machining with Excellent Wear Resistance

Abrasion Resistance Comparison (In-house Evaluation)

 $\label{eq:cutting} \begin{array}{l} \mbox{Cutting Conditions: Vc} = 180 \mbox{ m/min, } fz = 0.5 \mbox{ mm/t, ap } x \mbox{ ae} = 0.3 \times 8 \mbox{ mm} \\ \mbox{Cutting Dia. } \emptyset 10, \mbox{Dry} \qquad \mbox{Workpiece: SUS304} \end{array}$

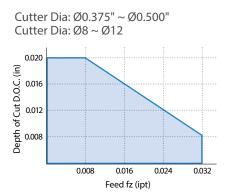
Toolholder Dimensions (Inch Size)

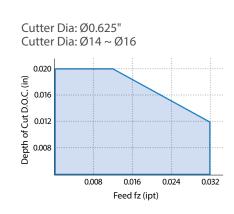
Shank	Description	Stock	No. of Inserts			Dimens	ions (in)			Maximum Ramping Angle	Rake Angle (°)	Coolant Hole	rawing	Weight (kg)	Max. Rev.	Clamp Screw
				ØD	ØD1	Ød	L	ł	S	α	A.R.		ā	((min⁻¹)	
a	MFH 0375-S375-01-1T-3		1	0.375	0.225	0.375	3.000	0.750		3°				0.04	16,200	
Standard (Cylindrical)	0500-S500-01-3T-3	۲	3	0.500	0.350	0.500	3.000	0.750	0.020	2°	+5°	✓	Fig. 1	0.07	14,000	SB- 1840TRP
(cynnuncur)	0625-S625-01-4T35		4	0.625	0.475	0.625	3.500	1.000		1.2°				0.12	11,400	1010111
													• : U.	S. Stock	🔳 : Made	to Order

Toolholder Dimensions (Metric Size)

Shank	Description	Stock	No. of Inserts			Dimensio	ons (mm)			Maximum Ramping Angle	Rake Angle (°)	Coolant Hole	Mu Weight (kg)	Weight (ka)	Max. Rev.	v. Clamp
			~ =	ØD	ØD1	Ød	L	ł	S	α	A.R.		Dr	((min ⁻¹) Screw	
	MFH 08-S10-01-1T	0	1	8	4.2	10	75	16		4°				0.04	20,000	_
Standard	10-S10-01-2T	0	2	10	6.2	10	80	20	0.5	3°	5°		Fig. 2	0.04	16,200	
(Cylindrical)	12-S12-01-3T	0	3	12	8.2	12	80	20	0.5	2°	5	· ·	riy. z	0.06	14,000	
	16-S16-01-4T	0	4	16	12.2	16	90	25		1.2°				0.12	11,400	
Long Shank (Cylindrical)	MFH 14-S12-01-3T	0	3	14	10.2	12	80	20	0.5	1.5°	5°	~	Fig. 4	0.07	12,500	SB-
	MFH 08-W10-01-1T	0	1	8	4.2	10	58	16		4°				0.03	20,000	1840TRP
Standard	10-W10-01-2T	0	2	10	6.2	10	60	20	0.5	3°	5°	 ✓ 	Fig. 3	0.03	16,200	
(Weldon)	12-W12-01-3T	0	3	12	8.2	12	65	20	0.5	2°	د	· ·	FIG. 5	0.05	14,000	
	16-W16-01-4T	0	4	16	12.2	16	73	25		1.2°				0.1	11,400	
Over Size (Weldon)	MFH 14-W12-01-3T	0	3	14	10.2	12	65	20	0.5	1.5°	5°	~	Fig. 5	0.05	12,500	

Spare Parts and Applicable Inserts (Metric Size)


Description	Clamp Screw	Wrench	Pre-Set Torque Wrench*	Anti-Seize Compound	Applicable Inserts		
	Description		ß	all's	AND. 7	● P6	
	MFH01	SB-1840TRP	FTP-6	PST-IP6	MP-1	LPGT010210ER-GM	


○ : World Express (Shipping: 7-10 Business Days)

Applicable Inserts

Insert		Description		Di	mension	(in)	MEGACO	CVD		
			А	Т	Ød	W	rε	PR1535	PR1525	CA6535
General Purpose		LPGT010210ER-GM	0.165	0.086	0.083	0.247	0.039	•	•	•
										• : U.S. Stoc

Cutting Performance

aker	Workpiece	Holder D	Description and Feed Rat	e (fz: ipt) *Recommend	led D.O.C. = 0.012" Refere	ence Value	Recomm	ended Insert Grade	(Vc: sfm)
Chipbreaker	Material	MFH08	MFH10	MFH12	MFH14	MFH16	MEGACO	AT NANO	CVD
5		-1T	-2T	-3T	-3T	-4T	PR1525	PR1535	CA6535
	Carbon Steel		0.008~ 0.016 ~0.024		0.008	020 ~0.031	★ 390- 590 -820	☆ 390- 590 -820	-
	Alloy Steel		0.008~ 0.010 ~0.024		0.008~0.	020 ~0.031	★ 330- 520 -720	☆ 330- 520 -720	-
	Mold Steel (~40 HRc)		0.008~ 0.012 ~0.020		0.008~ 0.	016 ~0.024	★ 260- 460 -590	☆ 260- 460 -590	-
	Mold Steel (40~50 HRc)		0.008~ 0.010 ~0.012		0.008~ 0.	010 ~0.016	★ 200- 330 -430	☆ 200- 330 -430	-
	Austenitic Stainless Steel					公 330- 520 -660			-
GM	Martensitic Stainless Steel		0.008~ 0.012 ~0.020		0.008~ 0.	016 ~0.024	-	☆ 490- 660 -820	★ 590- 790 -980
	Precipitation Hardened Stainless Steel						-	★ 300- 390 -490	-
	Gray Cast Iron		0.008~ 0.016 ~0.024		0.008~ 0.	020 ~0.031	★ 390- 590 -820	-	-
	Nodular Cast Iron		0.008~ 0.012 ~0.020		0.008~ 0.	016 ~0.024	★ 330- 490 -660	-	-
	Ni-base Heat-Resistant Alloy				0.000	010 ~0.016	-	☆ 70- 100 -160	★ 70- 100 -160
	Titanium Alloy		0.008~ 0.010 ~0.012		0.008~ 0. 1	UIU ~U.UI6	-	★ 130- 200 -260	-

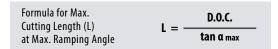
Machining with coolant is recommended for Ni-base Heat Resistant Alloy and Titanium Alloy

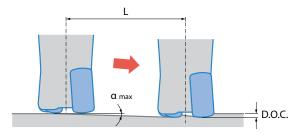
• The number in bold font is recommended starting conditions. Adjust the cutting speed and the feed rate within the above conditions according to the actual machining situation.

. Internal coolant is recommended for slotting applications

Approximate Programming Radius Adjustment

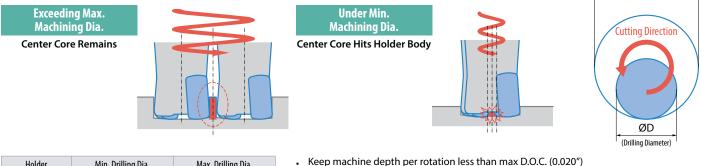
Drawing	Programmable R (in)	Maximum Wall Angle (in)	Maximum Unmachined Portion (in)
	0.039	0	0.0083
Machining Portion Tables	0.047 (Recommended)	0	0.0067
Machining Portion Unmachined Portion Wachining Portion Unmachined Portion Wachining Portion	0.059	0.0032	0.0039
Raulus Polition	0.079	0.0110	0.0004


Ramping Reference Data

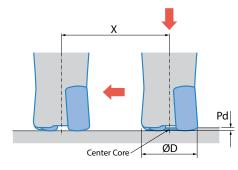

Description	Cutter Dia. ØD	0.375"	0.500"	0.625"	8mm	10mm	12mm	14mm	16mm
MFH01	Maximum Ramping Angle a max	3.0°	2.0°	1.2°	4.0°	3.0°	2.0°	1.5°	1.2°
Mrn01	tan α max	0.052	0.035	0.021	0.070	0.052	0.035	0.026	0.021

Decrease Ramping Angle if Chips Become Excessively Long

Ramping


- Recommended ramping angle is ≤ max (see chart above for recommended ramp angle)
- Reduce recommended feed rate by 70%

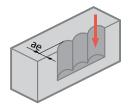
Helical Milling


• For Helical milling, use between Min. Drilling Dia. and Max. Drilling Dia.

Holder	Min. Drilling Dia.	Max. Drilling Dia.
MFH01	2xØD-0.138"	2xØD-0.079"

- Keep machine depth per rotation less than max D.O.C. (0.020")
- Use climb milling. (Refer to detail on right)
- Feed rate should be reduced to 50% of recommended cutting condition (Page 6)
- Use caution to eliminate incidences caused by producing long chips

Drilling



Holder	Min. Drilling Depth (Pd)	Min. Cutting Length X for Flat Bottom Surface		
MFH01	0.020"	ØD-0.138"		

Plunging After Drilling

- It is recommended to reduce feed by 25% of recommendation on Page 6 until Center Core is removed
- Axial feed rate recommendation per revolution is 0.008ipr while drilling

Plunging

Insert Description	Maximum Width of Cut (ae)
LPGT01	0.067"

- Reduce feed rate to $fz \leq 0.008$ ipt when plunging

MFH Series

Large Lineup for High Feed Machining, Large ap and Low Cutting Force

MFH-RAPT R MINI

Small Dia. Cutter for High Feed Machining

Cutter Dia. Ø0.625" ~ Ø2.000" Cutter Dia. Ø16 ~ Ø32

Economical Inserts with 4 Cutting Edges High Efficiency with Small Dia. And Fine Pitch High Feed Machining

KYOCERA Precision Tools

102 Industrial Park Road Hendersonville, NC 28792 Customer Service | 800.823.7284 - Option 1 Technical Support | 800.823.7284 - Option 2

W | Official Website | www.kyoceraprecisiontools.com

W | Distributor Website | http://mykpti.kyocera.com

E | cuttingtools@kyocera.com

©KYOCERA Precision Tools 08/16, 5K Printed in U.S.A.